Society of Hospital Medicine Empowering hospitalists. Society of Hospital Medicine

Heart Failure Implementation Science and Best Clinical Practices

Rapid Clinical Updates

Society of Hospital Medicine

S Transforming patient care.

Heart Failure Implementation Science and Best Clinical Practices

Dr. Lily Ackermann, ScM, MD, FACS, FHM

- Clinical Associate Professor of Medicine, Thomas Jefferson University Hospital
- Section Lead, Co-Management and Physician Onboarding
- SHM Education Committee member

Disclosures

Lily Ackermann has no relevant financial or advisory relationships with corporate organizations related to this activity.

Dr. Ebrahim Barkoudah, MD, FACP, MPH, SFHM

System Chief and Regional Chief Medical and Chief Quality Officer System Chief Hospital Medicine

SHM Education Committee Member

Baystate Health

Boston, MA

Disclosures

Ebrahim Barkoudah discloses the following relevant financial or advisory relationships:

- Advisory fees from Portola, Janssen, Novartis, and Pfizer/Bristol-Myers-Squibb to Hospital Medicine and Cardiovascular Medicine research
- Research support payments from National Institutes of Health/National Heart, Lung, and Blood Institute; Bristol Myers Squibb; Janssen. Payments made to Brigham and Women's Hospital for performing clinical endpoints sponsored by various entities
- Editor-in-Chief Journal of Clinical Outcomes
 Management

Dr. Safia Chatur, MD

Instructor in Medicine, Harvard Medical School Cardiologist, Massachusetts General Hospital and Brigham and Women's Hospital MSc candidate in behavioral economics at the London School of Economics

Dr. Ankeet S. Bhatt, MD, MBA, ScM

Associate Physician, Kaiser Permanente San Francisco Medical Center

Research Scientist, KPNC Division of Research

Assistant Professor, Dept of Health System Science, Kaiser Permanente Bernard J. Tyson SOM

Adjunct Professor, Stanford University School of Medicine

Disclosures

Dr. Safia Chatur has no relevant financial or advisory relationships with corporate organizations related to this activity.

Dr. Ankheet Bhatt has no relevant financial or advisory relationships with corporate organizations related to this activity.

QUESTIONS

Question 1

For patients hospitalized with acute heart failure on GDMT (beta blocker, ACEi/ARNi, SGLT2i, MRA) with an increased creatinine on admission, it is best to practice to

- A. Stop all GDMT (beta blocker, ACEi/ARNi, SGLT2i, MRA) until outpatient cardiology visit
- B. Continue only the beta blocker until outpatient cardiology follow up, stop ACEi/ARNi, SGLT2i, MRA
- C. Prior to discharge restart all GDMT (beta blocker ACEi, SGLT2i, MRA, ARNi) when the patient is stable
- D. Restart the beta blocker and MRA when the patient is stable prior to discharge

With a new diagnosis of HFrEF or acute HFrEF exacerbation, the goal timeline to be on GDMT quadruple therapy (beta blocker, ARNi/ACEi, SGLT2i, MRA) is

A. Within 4 to 6 weeks

B. Within six months

C. Within one year

D. No clear timeline, it depends on the patient's ability to tolerate each medication as they are added

Implementation Science and Clinical Trials in Heart Failure

Ankeet S. Bhatt, MD, MBA, ScM

Associate Physician, Kaiser Permanente San Francisco Medical Center Research Scientist, KPNC Division of Research Assistant Professor, Dept of Health System Science, Kaiser Permanente Bernard J. Tyson SOM Adjunct Professor, Stanford University School of Medicine

ASB has received research grant support to his institution from National Heart, Lung, and Blood Institute, National Institute on Aging, American College of Cardiology Foundation & consulting fees from Sanofi, Merck, & Novo Nordisk.

Implementation Science

"...the scientific study of methods and strategies that facilitate the uptake of evidence-based practice and research into regular use by practitioners and policymakers."

Implementation Science. University of Washington.

The Case for Implementation Research in Heart Failure

The stakes are high!!

Risk is increasingly modifiable & successful implementation interventions may be transferrable to adjacent diseases.

Incomplete implementation limits population level risk reductions.

The Case for Implementation Research in Heart Failure

Greene SJ et. al. J. Am Coll Cardio. 2023. Vaduganathan, MV, et. al. Lancet. 2020.

How are we doing?

<5% of patients are on optimal guideline recommended HF therapy

Green SJ et al. JACC-HF. 2019. Savarese G et al. JACC-HF. 2023.

Treated

Implementation Science in Cardiometabolic Care

Implementation Science Frameworks

Stronger Intervention Less Scalability

Weaker Intervention Greater Scalability

REVEAL-HF: Risk Based Audit & Feedback

Ahmad T et. al. JAMA Cardiology. 2022

PROMPT-HF/AHF: Best Practice Alerts

PROMPT-HF: Outpatient

PROMPT-AHF: Hospitalized

BETTER-CARE-HF: Targeted MRA Alerts

Mukhopadhyay A et. al. J. Am. Coll. Cardiol. 2023.

STRONG-HF: Protocolized Care

STRONG-HF: Protocolized Care

Finding Middle Ground in Implementation Science

Ghazi et. al. J Am Coll Cardiol. 2022. Mebazza et. al. Lancet. 2022.

Hospitalization = Opportunity for GDMT Optimization

- Targets high-risk patients in a well-resourced setting
- Addresses potential reasons for poor outpatient GDMT optimization (time, reinforcement, education)
- Allows for frequent **hemodynamic** and symptom **monitoring**
- Can include patients hospitalized for and with HFrEF
- Potential for **virtual nudging strategies** to allow for scale across integrated health systems.

IMPLEMENT-HF: Virtual Care Teams

Bhatt AS, Varshney AS et. al. J Am Coll Cardiol. 2023.

In-Hospital Adverse Events (CEC Adjudicated)

	Virtual Care Team Strategy n=107	Usual Care n=145	P-Value
Any Adverse Event	23 (21.5%)	40 (27.6%)	0.30
Hypotension	12 (11.2%)	24 (16.6%)	0.28
Hyperkalemia	8 (7.5 %)	18 (12.4%)	0.22
Acute kidney injury	5 (4.7%)	3 (2.1%)	0.29
Bradycardia	0 (0.0 %)	0 (0.0 %)	
In Hospital Death	1 (0.9 %)	2 (1.4 %)	

Mass General Brigham

KAISER PERMANENTE. Bhatt et. al. J Am Coll Cardiol. 2023.

Hospital Length of Stay

Center

Hospital Length of Stay

PACT-HF: Multifaceted Transitional Care

Structured Discharge Summary

Nurse Home Visits

 \bigcirc

Heart Function Clinic Referral

CONNECT-HF: Multifaceted Transitional Care

Time to First Heart Failure Hospitalization or Death

Time since discharge, d

360

EPIC-HF: Patient Directed Activation

Implementation Science in HF: A Look Toward the Future

Weaker Intervention Greater Scalability

Implementation Science in HF: A Look Toward the Future

Precision Implementation Science?

Stronger Intervention Less Scalability

Greater Scalability

Prior Clinician Performance

- Rural vs. Urban Populations
- Risk-Based Implementation

Comorbidity Based Implementation

S Expansion Across the CKM Spectrum

Thank You

Ankeet S. Bhatt, MD, MBA, ScM

Associate Physician, Kaiser Permanente San Francisco Medical Center Research Scientist, KPNC Division of Research Assistant Professor, Dept of Health System Science, Kaiser Permanente Bernard J. Tyson SOM Adiunct Professor. Stanford University School of Medicine

PERMANENTE MEDICINE® The Permanente Medical Group

Implementation of Heart Failure GDMT In Patients with Impaired Renal Function: Dips, Declines and Deteriorations

Safia Chatur, MD

Cardiologist, Massachusetts General Hospital (Incoming) Clinical Instructor, Harvard Medical School (Incoming)

Patients with CKD Face Increased Clinical Risks

Distribution of KDIGO Risk In PARADIGM-HF

IIACR (mg/g)

			6/6/				
		A1	A2	A3			
Ē		<30	30-300	>300			
G1 G1	≥90	5.3%	1.6%	0.6%			
G2	60-89	36.4%	10.4%	2.3%			
G3a	45-59	19.9%	6.8%	1.1%			
G3b	30-44	9.9%	4.5%	0.7%			
G4	15-29	0.3%	0.1%	0.1%			
G5	<15	0	0	0			
e							
	KDIGO Risk Categories						
Low R (n=79	isk 7)	Moderate Ris (n=609)	k High/	(n=504)			
42%		32%		26%			

Chatur S et al; JACC(2024)

Comorbid Intersection of HF and CKD

↑ clinical risk <u>and</u> ↑ rates of premature drug discontinuation

Prescription of HF GDMT at Discharge By eGFR

 Graded decrease in prescription rates for all components of HF GDMT across lower eGFR categories

Patel, R.B et al; JACC(2021)

SGLT2i Exhibits Broad Safety and Efficacy Across Spectrum of Kidney Function

DAPA-HF

DELIVER

Jhund P, et al. Circulation(2020) McCausland P, et al. JAMA Cardiol(2022)

ARNI Exhibits Consistent Safety and Efficacy Irrespective of Baseline CKD

	All Patients (N = 8,399)			CKD (n = 2,745) (eGFR <60 ml/min/1.73 m ²)		No CKD (n = 5,654) (eGFR ≥60 ml/min/1.73 m²)					
	Sacubitril/ Valsartan (n = 4,187)	Enalapril (n = 4,212)	HR (95% CI)	p Value	Sacubitril/ Valsartan (n = 1,333)	Enalapril (n = 1,412)	HR (95% CI)	Sacubitril/ Valsartan (n = 2,854)	Enalapril (n = 2,800)	HR (95% CI)	p Value Interaction
Cardiovascular endpoints											
CV death or HF hospitalization*	914 (22)	1,117 (27)	0.80 (0.73-0.87)	<0.001	358 (27)	465 (33)	0.79 (0.69-0.90)	556 (19)	652 (23)	0.81 (0.73-0.91)	0.70
CV death	558 (13)	693 (17)	0.80 (0.71-0.89)	< 0.001	211 (16)	291 (21)	0.76 (0.63-0.90)	347 (12)	402 (14)	0.84 (0.72-0.96)	0.39
HF hospitalization	537 (13)	658 (16)	0.79 (0.71-0.89)	< 0.001	223 (17)	288 (20)	0.79 (0.67-0.95)	314 (11)	370 (13)	0.81 (0.70-0.94)	0.83
All-cause mortality	711 (17)	835 (20)	0.84 (0.76-0.93)	<0.001	269 (20)	354 (25)	0.79 (0.68-0.93)	442 (15)	481 (17)	0.89 (0.78-1.01)	0.27

Damman, K et al; JACC-HF(2018)

sMRA: Balance of Safety and Efficacy Across eGFR

- Consistent efficacy across eGFR categories: Pinteraction=0.13
- Increased absolute risk of permanent drug discontinuation in lower eGFR categories Pinteraction=0.003

Beldhuis I et al; JACC-HF(2019)

Risk Predication in CKD

2024 Clinical Practice Guidelines

 Strongly recommends the use of externally validated risk stratification tools for clinical decision making

↓ eGFR and ↑ UACR predict adverse
 ↓ eGFR and ↑ UACR predict adverse

eGFR 15-29

UACR

Both eGFR and UACR represent *different* axes of CKD risk and are independently <u>and</u> incrementally prognostic

Treatment Effects Across KDIGO Risk Categories

Sacubitril/Valsartan: PARADIGM-HF

Chatur S et al; JACC(2024)

Empagliflozin: EMPEROR Program

HR (95% CI)		<i>P</i> Value for Trend
0.77 (0.70-0.84)	HEH	0.299
0.81 (0.66-1.01)	⊢ ∎–4	
0.63 (0.52-0.76)		
0.82 (0.68-0.98)	—	
0.84 (0.71-1.01)	⊢	

Butler J et al; JACC(2023)

Initiation of HF GDMT According to Baseline

Drug	Evidence across GFR str to baseline eGFR enroln	Evidence across GFR strata according to baseline eGFR enrolment criteria					CKD treatment interaction	Treatment effect with CKD
	ESKD	15-30	30-60	>60				
ACE-I/ARB	Moderate evidence if dialysis, weak evidence if not on dialysis				Yes	No (beneficial effect of around 1–2 ml/min/ 1.73 m ² per year in CKD trials)	No	Relative benefit: ~ Absolute benefit: ↑
Beta-blockers					No	No	Yes (potentially but some conflicting results)	Relative benefit: ~ Absolute benefit: ↑
MRA					Yes	No	No	Relative benefit: ~ Absolute benefit: ↑
ARNI					Yes	Yes (around 0.5 ml/min/1.73 m ² per year)	No	Relative benefit: ~ Absolute benefit: ↑
SGLT2-i		>20	-		Yes	Yes (around 1–2 ml/min/ 1.73 m ² per year)	No	Relative benefit: ~ Absolute benefit: ↑
lvabradine					No	No	No	Relative benefit: ~ Absolute benefit: ↑
Vericiguat					No	No	No	Relative benefit: ~ Absolute benefit: ↑
Omecamtiv mecarb	bil				No	No	No	Relative benefit: ~

Dark green, strong evidence; light green, moderate evidence; red, not advised; light grey, no data. ACE-I, angiotensin-converting enzyme inhibitor; ABR, angiotensin receptor blocker; ARNI, angiotensin receptor – neprilysin inhibitor; CKD, chronic kidney disease (eGFR <60 ml/min/1.73 m²); eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; HF, heart failure; MRA, mineralocorticoid receptor antagonist; RAASi, renin–angiotensin–aldosterone system inhibitor; SGLT2-i, sodium–glucose cotransporter 2 inhibitor.

Mullens W et al; EJHF(2022)

Renal Outcomes with ARNI and SGLT2i in HF

Trial	N	Design	ESKD events	≥40% / 50% ↓ in eGFR	Effect on renal endpoint	
		ibitors				
PARADIGM-HF	8442	Sac/val vs. enalapril	Sac/val: 8 (0.2%) Enalapril: 16 (0.4%)	Sac/val: 32 (0.8%) Enalapril: 41 (1.0%)	HR 0.63 (95% CI 0.42–0.95) for ESKD+ ≥50% eGFR decline (post hoc)	
PARAGON-HF	4822	Sac/val vs. valsartan	Sac/val: 7 (0.3%) Valsartan: 12 (0.5%)	Sac/val: 27 (1.1%) Valsartan: 60 (2.5%)	HR 0.50 (95% CI 0.33–0.77) for ESKD+ ≥50% eGFR decline or renal death	
	Sodium–glucose cotransporter 2 inhibitors					
DAPA-HF	4744	Dapagliflozin vs. placebo	Dapagliflozin: 16 (0.7%) Placebo: 16 (0.7%)	Dapa: 14 (0.6%) Placebo: 23 (1.0%)	HR 0.71 (95% CI 0.44–1.16) for ESKD+ ≥50% eGFR decline or renal death	
DELIVER	6262	Dapagliflozin vs. placebo	Dapagliflozin: 14 (0.4%) Placebo: 20 (0.6%)	Dapa: 74 (2.4%) Placebo: 68 (2.2%)	HR 1.08 (95% CI 0.79-1.49) Rate of eGFR decline: group difference 1.4 mL/min/year	
EMPEROR- Reduced	3730	Empagliflozin vs. placebo	No breakdown ESKD vs. Empagliflozin: 30 (1.6%	40% eGFR drop), placebo: 58 (3.1%)	Rate of eGFR decline: group difference 1.7 ml/min/year	
EMPEROR- Preserved	5988	Empagliflozin vs. placebo	No breakdown ESKD vs. Empagliflozin: 108 (3.6%	40% eGFR drop), Placebo: 112 (3.7%)	Rate of eGFR decline: group difference 1.4 ml/min/year	

ARNI and SGLT2i Attenuate eGFR Decline

Key messages

- 1. Acute drop in GFR with RAASi, ARNI and SGLT2-i does not diminishes treatment effect
- 2. A reduction in slope deterioration in HFrEF with ARNI and SGLT2-i is associated with reduced hard renal endpoints

Mullens W et al; EJHF(2022)

MRA Does not Modify Long-Term eGFR Trajectory

Vaduganathan M et al; EJHF(2021)

Variable Renal Responses to Established and Newer HF Therapies: Early "eGFR Dip"

European Journal of Heart Failure (2020) **22**, 584–603 doi:10.1002/ejhf.1697 **POSITION PAPER**

Evaluation of kidney function throughout the heart failure trajectory – a position statement from the Heart Failure Association of the European Society of Cardiology

Expert consensus statements suggest that moderate decline in eGFR of up to **15-20%** may be expected on treatment initiation

RAS/Neprilysin Inhibition

P.Dalanaye. Expert Opinion on Pharmacotherapy (2019)

Early eGFR 'dip' on Treatment Initiation: SGLT2i NOT adversely prognostic

Consistent treatment effects across a wide range of post-initiation eGFR declines

Adamson C et al Circ(2021) McCausland F et al JAMA Cardiol (2023)

Early eGFR 'dip' on Treatment Initiation: ARNI

Consistent treatment effects across wide range of post initiation eGFR declines

Chatur S et al; JACC(2022)

Patients with More Advanced CKD?

HIDNEY DISE PS			Persistent albuminuria categories Description and range					
IPROV	P	GO	A1	A2	A3			
ING G	OBAL O	JTCOM	<30 mg/g <3 mg/mmol	30–300 mg/g 3–30 mg/mmol	>300 mg/g >30 mg/mmol			
n²)	G1	≥90						
n/1.73 n nge	G2	60–89						
(ml/mir and ra	G3a	45–59						
ories ription	G3b	30–44						
:R cate c Desc	G4	15–29						
G	G5	<15						

Trial	eGFR Threshold ml/min/1.73m ²
DAPA-HF	<30
DELIVER	<25
PARADIGM-HF	<30
PARAGON-HF	<25
EMPHASIS	<30
RALES	<30

Current US FDA/Expert Consensus Guidance

SGLT2i

US FDA Labelling

 Does not recommend initiation of dapagliflozin in patients with eGFR<25; however, can be continued to reduce CV and kidney risk.

 SGLT2i *contraindicated* in patients with baseline eGFR< 20

ARNI

US FDA Labelling

- Does *NOT* identify threshold renal function precluding initiation or continuation of sacubitril/valsartan
- Dose reduction of sacubitril/valsartan with eGFR< 30 mL/min/1.73 m²

sMRA

US FDA Labelling

 Does not recommend initiation of dapagliflozin in patients with eGFR<30

 Sacubitril/valsartan contraindicated in patients with baseline eGFR< 30 and should be discontinued if eGFR falls below 30 2021 ESC Guidelines

 MRA contraindicated in patients with baseline eGFR< 30. Halve dose and monitor if eGFR drops to <30; discontinue immediately if eGFR drops to <20

Benefit-to-Risk Ratio May Favor Continuation of Therapy with eGFR Decline < Threshold for Trial Inclusion

Chatur S et al; JACC(2023)

Chatur S et al; JACC-HF(2024)

Matsumoto S et al; JACC(2024)

P for

0.87

0.92

0.84

0.51

Ongoing Clinical Trials Will Help To Fill The Knowledge Gap in Advanced CKD

SGLT2i

- RENAL LIFECYCLE Trial
- SDHF

ARNI

- ESARHD-HF
- The Effect of Sacubitril/Valsartan on CV Events in Maintenance Dialysis Patients: A Prospective Cohort Study

Further Randomized evidence is required to better understand the safety and efficacy of components of HF GDMT in patients with HF and advanced CKD

Sime Empowering hospitalists. Transforming patient care. Society of Hospital Medicine

Q & A