Society of Hospital Medicine Empowering hospitalists. Society of Hospital Medicine

Rapid Clinical Updates: Striving for Oral Stepdown: Novel Agents and Strategies for Avoiding OPAT

Speakers

Jose Mercado, MD

Hospital Medicine Physician Dartmouth-Hitchcock Medical Center

Reinaldo Perez, MD

Associate Hospital Epidemiologist Durham VA Medical Center

Moderated by

Joe Sweigart, MD, MPH, SFHM

Division of Hospital Medicine University of Kentucky

Dr. Joseph Sweigart, MD, FHM, SFHM

- Professor at the University of Kentucky, Division of Hospital Medicine
- SHM Board of Directors

Dr. Jose Mercado, MD

- Hospital Medicine Physician at Dartmouth-Hitchcock Medical Center (DHMC)
- Regional Medical Director for Inpatient
 Quality
- Medical Chair of System Clinical Pharmacy and Therapeutics for Dartmouth Health
- Associate Medical Director for Care Management and Utilization Management

Dr. Reinaldo Perez, MD

- Infections Diseases Physician
- Associate Hospital Epidemiologist at Durham VA Medical Center
- Duke Center for Antimicrobial Stewardship and Infection, Duke University

Please submit questions using Q&A feature

We will have Q&A time after

QUESTIONS

Society of Hospital Medicine

Question 1

1. Which of the following therapies has RCT level evidence for the treatment of bloodstream infection?

- A. Oritavancin
- B. Dalbavancin
- c. Tedizolid
- D. Omadacycline
- E. Eravacycline

Question 2

- 2. Which of the following patients have generally been excluded from studies of oral stepdown therapy?
 - A. Patients with retained infected prosthetic material
 - B. Patients with central nervous system involvement
 - C. Patients with severe immunocompromise
 - D. Patients with left sided endocarditis
 - E. All of the above

S Province & Barrier

Society of Hospital Medicine

Striving for Oral Stepdown: Novel Agents and Strategies for Avoiding OPAT

Jose Mercado and Rey Perez

11/21/24

Disclosures

- **RP:** none
- JM: none

Objectives

- Articulate the benefits of long-acting infusion therapy and early oral stepdown
- Summarize key principles when assessing patient candidacy for early stepdown
- Assess the literature on new therapeutics of significance

Outpatient Parenteral Antibiotic Therapy (OPAT)

- Prolonged antibiotic therapy has been the historical standard of care for severe infections but comes with numerous downsides:
 - Line associated complications
 - Logistical challenges of placement or patient self-administration
 - High cost of home infusion services or rehab stay
 - Prolonged hospital stay to facilitate coordination
 - Administrative burden of therapeutic drug monitoring

A New Way Forward?

Articles

Efficacy and safety of an early oral switch in low-risk *Staphylococcus aureus* bloodstream infection (SABATO): an international, openlabel, parallel-group, randomised, controlled, non-inferiority trial

 Prof Achim J Kaasch MD ° A ⊠, Luis Eduardo López-Cortés MD ^{b d},

 Prof Jesús Rodríguez-Baño MD ^{b d},

 Prof Gerd Fätkenheuer MD ^e,

 Norma Jung MD ^e,

 Prof Siegbert Rieg MD ^h,

 Raphaël Lepeule MD ⁱ,

 Laetitia Coutte MD ⁱ,

 Prof Colin R MacKenzie MD ^l,

 Alex Soriano MD PhD ^m,

 Stefan Hagel MD ⁿ,

 Prof Buno Fantin MD ^o,

 Matthieu Lafaurie MD ^p,

 Jean-Philippe Talarmin MD ^q,

 Aurélien Dinh MD ^r...Violaine Tolsma

> Trials. 2022 May 16;23(1):407. doi: 10.1186/s13063-022-06370-1.

Dalbavancin as an option for treatment of S. aureus bacteremia (DOTS): study protocol for a phase 2b, multicenter, randomized, open-label clinical trial

Nicholas A Turner ¹, Smitha Zaharoff ², Heather King ³ ⁴, Scott Evans ⁵, Toshimitsu Hamasaki ⁵, Thomas Lodise ⁶, Varduhi Ghazaryan ⁷, Tatiana Beresnev ⁷, Todd Riccobene ⁸, Rinal Patel ⁸, Sarah B Doernberg ⁹, Urania Rappo ¹⁰, Vance G Fowler Jr ¹, Thomas L Holland ¹¹; Antibacterial Resistance Leadership Group (ARLG)

Affiliations + expand PMID: 35578360 PMCID: PMC9109297 DOI: 10.1186/s13063-022-06370-1

ORIGINAL ARTICLE

f in 🖂

Oral versus Intravenous Antibiotics for Bone and Joint Infection

Authors: Ho-Kwong Li, M.R.C.P., Ines Rombach, D.Phil., Rhea Zambellas, M.Sc., A. Sarah Walker, Ph.D., Martin A. McNally, F.R.C.S. (Orth.), Bridget L. Atkins, F.R.C.P., Benjamin A. Lipsky, M.D., +52, for the OVIVA Trial Collaborators^{*} Author Info & Affiliations

Published January 30, 2019 | N Engl J Med 2019;380:425-436 | DOI: 10.1056/NEJMoa1710926 | <u>VOL. 380 NO. 5</u> Copyright © 2019

ORIGINAL ARTICLE

f in 🖾

Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis

Authors: Kasper Iversen, M.D., D.M.Sc., Nikolaj Ihlemann, M.D., Ph.D., Sabine U. Gill, M.D., Ph.D., Trine Madsen, M.D., Ph.D., Hanne Elming, M.D., Ph.D., Kaare T. Jensen, M.D., Ph.D., Niels E. Bruun, M.D., D.M.Sc., +13, and Henning Bundgaard, M.D., D.M.Sc. Author Info & Affiliations

Published August 28, 2018 | N Engl J Med 2019;380:415-424 | DOI: 10.1056/NEJMoa1808312 | <u>VOL. 380 NO. 5</u> Copyright © 2018

Antimicrobial Stewardship

Antibiotics with high oral bioavailability can minimize unnecessary indwelling vascular lines and risks of CLABSIs

Antibiotics with long half-lives allow for simplified dosing regimens which reduces risk of nonadherence, which is a key contributor to antibiotic resistance

Antibiotics with long half lives can achieve steady drug levels and reduce the risk of subtherapeutic dosing

- Reduce unnecessary antibiotic exposure with shorter treatment courses

CDC Antibiotic Resistance Threats Report

CDC's 2019 AR Threats Report: PREVENTION WORKS.

•

AND DECREASES IN INFECTIONS CAUSED BY:

Vancomycin-resistant

Carbapenem-resistant

↓29% Multidrug-resistant Pseudomonas aeruginosa

► 21% Methicillin-resistant Staphylococcus aureus (MRSA)

25% Drug-resistant Candida

STABLE Carbapenem-resistant Enterobacteriaceae (CRE) & drug-resistant tuberculosis (TB disease cases) Despite these gains, CDC's 2019 AR Threats Report shows additional actions are needed to protect people.

2.8M + antibiotic-resistant 35

Plus: 223,900 cases and 12,800 deaths from Clostridioides difficile

AND INCREASES IN INFECTIONS CAUSED BY:

4 315% 4 124% Erythromycin-resistant invasive group A strep Drug-resistant *Neisseria gonorrhoeae*

ESBL-producing EAC Enterobacteriaceae

50%

Society of Hospital Medicine

Society of Hospital Medicine

1954 Patients were assessed for eligibility

Key Principles: Patient Factors

- Remember the 60-90 Rule
 - Infections due to susceptible isolates respond to appropriate therapy ~90% of the time, whereas
 infections due to resistant isolates (or infections treated with inappropriate antibiotics) respond ~60%
 of the time
- Gut Absorption
 - Hx of gastric bypass?
 - DDIs with supplements or PPIs?
- Prosthetic Material
- Severe Immunosuppression

Key Principles: Drug Factors

- Oral bioavailability
- Dose equivalence / augmentation
- Drug penetration to protected sites
- Long term tolerability

Long Acting Infusion Therapies

CDC estimated 323,700 cases & 10,600 deaths due to MRSA in 2019

Clinical Infectious Diseases, Volume 59, Issue 2, 15 July 2014, Pages e10– e52, <u>https://doi.org/10.1093/cid/ciu296</u>

Society of Hospital Medicine

Gram-positive microorganisms: Staphylococcus aureus, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus anginosus group, and Enterococcus faecalis (vancomycin susceptible isolates).

Dosage in Adult Patients (2.1, 2.3):			
Estimated Creatinine Clearance (CLcr)	Single Dose Regimen	Two-Dose Regimen	
30 mL/min and above or on regular hemodialysis	1500 mg	1000 mg followed one week later by 500 mg	
Less than 30 mL/min and not on regular hemodialysis	1125 mg	750 mg followed one week later by 375 mg	

No significant difference in clinical treatment success, microbiologic success, and tolerability

- Lower likelihood of experiencing AE than linezolid
- Lower likelihood of experiencing SAE than vancomycin and daptomycin
- Lower risk of all-cause mortality than vancomycin, linezolid and tigecycline

Fig 3. Forest plot on a log scale of the Odds ratios between dalbavancin and all other treatments for discontinuation due to AEs/ SAEs for adults only (Odds ratio >1 favours DAL).

https://doi.org/10.1371/journal.pone.0187792.g003

RESEARCH ARTICLE

Comparative efficacy and safety of antibiotics used to treat acute bacterial skin and skin structure infections: Results of a network meta-analysis

Julian F. Guest^{1,2}*, Jaime Esteban³, Anton G. Manganelli⁴, Andrea Novelli⁵, Giuliano Rizzardini^{6,7}, Miquel Serra⁴

The net cost, calculated as revenue minus total cost, was -\$1685 with dalbavancin vs \$75 with SoC

Higher 30-day readmission rate

Dalbavancin does not offer an economic or efficacy advantage

Figure 2. Thirty-day treatment success incremental cost-effectiveness ratio. Abbreviations: ICER, incremental cost-effectiveness ratio; SoC, standard of care.

Clinical Infectious Diseases

MAJOR ARTICLE

⁹ Diana Carolina Andrade,¹ and JianLi Niu^{2,}

Infectious Diseases Society of America hymedicine association

Cost-Consequence Analysis of Single-Dose Dalbavancin Versus Standard of Care for the Treatment of Acute Bacterial Skin and Skin Structure Infections in a Multisite Healthcare System

Dalbavancin Utilization in Rural Healthcare Setting: A Single Center Three Years' Experience Ahmad AlSalman, MD, Craig Worby, PharmD, Ritika Zijoo, MD, Emma Considine, DO, Colleen Kershaw, MD

Off-Label Therapeutic Indications	Clinical Success	Relapse	Resistance Development
Endocarditis	120/148 (81.1%)	7/114(6.1%)	3/114(2.6%)
Bloodstream infections	117/144(81.3%)	7/140(5.0%)	1/140(0.7%)
Bone and joint infections	408/483(84.5%)	31/387(8.0%)	0/387(0.0%)
Others	23/25(92.0%)	2/25(8.0%)	0/25(0.0%)
Deep sternal wound infections	15/16(93.8%)	1/16(6.2%)	0/16(0.0%)
Intrabdominal infection	3/3(100.0%)	0/3(0.0%)	0/3(0.0%)
Mediastinitis	1/2(50.0%)	1/2(50.0%)	0/2(0.0%)
Pneumonia	2/2(100.0%)	0/2(0.0%)	0/2(0.0%)
Sinusitis	1/1(100.0%)	0/1(0.0%)	0/1(0.0%)
Pyelonephritis	1/1(100.0%)	0/1(0.0%)	0/1(0.0%)

Table 6 Cumulative Efficacy Reported with the Use of Dalbavancin for off-Label Therapeutic Indications

Gatti M, Andreoni M, Pea F, Viale P. Real-World Use of Dalbavancin in the Era of Empowerment of Outpatient Antimicrobial Treatment: A Careful Appraisal Beyond Approved Indications Focusing on Unmet Clinical Needs. Drug Des Devel Ther. 2021 Aug 3;15:3349-3378. doi: 10.2147/DDDT.S313756. PMID: 34376971; PMCID: PMC8349200.

DOTS Trial

- Goal was to evaluate the efficacy and safety of dalbavancin versus standard of care for treatment of complicated SAB and right sided endocarditis
- Open label, multicenter randomized controlled trial
- Excluded patients with CNS involvement, left sided endocarditis, retained infected prosthetic material and severe immune compromise
- Primary outcome utilized a desirability of outcome analysis

METHODS (1): DOTS Study Design

Turner et al *Trials* 2022; PMID: 35578360

RESULTS (6): Primary Outcome Overall DOOR Distribution

DOOR probability: 47.7% (95% CI: 39.8%-55.7%)

Conclusion: Benefits/risks similar with dalbavancin vs SOC

RESULTS (8): Secondary Outcomes Non-inferiority Analysis

	Dalbavancin (n=100)	Standard of Care (n=100)
Clinical efficacy (95% CI)	73% (64-82)	72% (63-81)
Difference (95% CI)	+1% (-12 to +14%)	

Conclusion: Dalbavancin is non-inferior to SOC by traditional clinical efficacy

RESULTS (9): Safety

Adverse Events (AEs)	Dalbavancin (n=100)	Standard of care (n=100)
Serious adverse events (SAEs)	43	37
Related serious AEs	2	4
AEs leading to discontinuation	3	12

-Overall similar AE rates -Slightly more AEs leading to discontinuation with SOC

Oritavancin

Results

Demonstrates comparable efficacy to Vancomycin

Reduced occurrence of treatment related AE when compared to Vancomycin

Considerations

Lower rate of additional post-treatment oral and IV antibiotics

More effective in reducing rate of 30 day ER visits

More likely to reduce 30 day readmissions rate

	Oritavar	ncin	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
1.7.1 inpatient setting							
Whittaker 2020	7	99	18	100	27.3%	0.39 [0.17, 0.90]	
Subtotal (95% CI)		99		100	27.3%	0.39 [0.17, 0.90]	•
Total events	7		18				
Heterogeneity: Not appl	icable						
Test for overall effect: Z	: = 2.21 (P	= 0.03))				
1.7.2 Outpatient settin	g						
Anastasio 2017	0	59	3	59	5.3%	0.14 [0.01, 2.71]	
Lodise 2019	7	120	1085	6695	58.2%	0.36 [0.18, 0.74]	
Subtotal (95% CI)		179		6754	63.6%	0.34 [0.17, 0.69]	•
Total events	7		1088				
Heterogeneity: Chi ² = 0.	.36, df = 1	(P = 0.	55); l² = ()%			
Test for overall effect: Z	= 3.02 (P	= 0.003	3)				
1.7.3 Emergency Roor	n setting						
Helton 2020	6	61	6	61	9.1%	1.00 [0.34, 2.93]	<u> </u>
Subtotal (95% CI)		61		61	9.1%	1.00 [0.34, 2.93]	•
Total events	6		6				
Heterogeneity: Not appl	icable						
Test for overall effect: Z	. = 0.00 (P	= 1.00))				
Total (95% CI)		339		6915	100.0%	0.42 [0.26, 0.67]	•
Total events	20		1112				
Heterogeneity: Chi ² = 3.	.24, df = 3	(P = 0.	36); l ² = 7	7%			
Test for overall effect: Z	= 3.57 (P	= 0.000	04)				0.005 0.1 1 10 200
Test for subaroup differ	ences: Ch	i ² = 2.82	2. df = 2 (P = 0.2	4). I ² = 29	.1%	avours untavalium Favours colluol

Fig. 9. Forest plots showing risk ratio with 95% confidence interval (CI) of 30-day readmission rates in a fixed-effects model.

Review

Efficacy and safety of oritavancin for the treatment of acute bacterial skin and skin-structure infections: a systematic review and meta-analysis

Huan Zhang^{a,b}, Weiying Zhou^b, Jin Wang^a, Yun Cai^{a,*}

Oritavancin

Outcomes	Oritavancin	Vancomycin	PValue
Unadjusted Outcomes			
30 day subsequent admission rates	5.80%	16.20%	.002
Mean healthcare costs	\$10 096 (8865)	\$12 779 (28 773)	.30
Adjusted Outcomes			
30 day subsequent admission rates	6.10%	16.20%	.003
Mean healthcare costs	\$12 695	\$12 717	.98

Open Forum Infectious Diseases

MAJOR ARTICLE

Comparisons of 30-Day Admission and 30-Day Total Healthcare Costs Between Patients Who Were Treated With Oritavancin or Vancomycin for a Skin Infection in the Outpatient Setting

Thomas P. Lodise,¹ Christina Palazzolo,¹ Kerry Reksc,¹ Elizabeth Packnett,² and Mark Redell³

¹Albany College of Pharmacy and the Health Sciences, Albany, New York; ²IBM Watson Health, Bethesda, Maryland, and ³Melinta Therapeutics, Medical Affairs, Morristown, New Jersey

Table 2 Summary of efficacy data (mITT population, unless otherwise stated)

Rezafungin

- Long acting echinocandin administered as a once weekly infusion for the treatment of invasive candidal infections
- Similar efficacy and safety profile to standard echinocandins (caspofungin, micafungin, etc)

Rezafungin	Caspofungin	Treatment difference
(n=139)	(n=155)	(95% CI)

Primary pooled efficacy endpoint: day 30 all-cause mortality

Deceased or unknown survival status		26 (19%)	30 (19%)	
	Known deceased	21 (15%)	25 (16%)	
	Unknown survival status	5 (4%)	5 (3%)	
Alive		113 (81%)	125 (81%)	
Death rate*				-1.5% (-10.7 to 7.7)

Day 14 mycological response

Fradication	100 (72%)	106 (68%)	
LIAUCATION	100 (7270)	100 (00%)	
Failure or indeterminate	39 (28%)	49 (32%)	
Eradication rate*			4·3% (-6·2 to 14·7)

Other Oral Therapies of Note

Tedizolid

- Same spectrum of activity as linezolid but daily dosing and with improved tolerability
- Fewer discontinuations for cytopenia, fewer DDIs with serotonergic agents, less peripheral neuropathy
- Poor CNS penetration, poor blood serum penetration as highly protein bound

D

Open Forum Infect Dis, Volume 9, Issue 6, June 2022, ofac028, <u>https://doi.org/10.1093/ofid/ofac028</u>

The content of this slide may be subject to copyright: please see the slide notes for details.

Gram positive organisms:

- Staphylococcus aureus (methicillin-susceptible and -resistant isolates),
- Staphylococcus lugdunensis,
- Streptococcus pyogenes,
- Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus),

Infection	Loading Doses	Maintenance Dose
CABP	<u>NUZYRA Injection:</u> Day 1: 200 mg by intravenous infusion over 60 minutes <u>OR</u> 100 mg by <u>intravenous</u> infusion over 30 minutes twice (2.2) <u>OR</u> <u>NUZYRA Tablets:</u> Day 1: 300 mg <u>orally</u> <u>twice</u> (2.2)	NUZYRA Injection: 100 mg by <u>intravenous</u> infusion over 30 minutes once daily <u>OR</u> <u>NUZYRA Tablets:</u> 300 mg <u>orally</u> once daily(2.2)
ABSSSI	NUZYRA Injection: Day 1: 200 mg by intravenous infusion over 60 minutes OR 100 mg by intravenous infusion over 30 minutes twice (2.3) OR NUZYRA Tablets: Day 1 and Day 2: 450 mg orally once daily (2.3)	NUZYRA Injection: 100 mg by <u>intravenous</u> infusion over 30 minutes once daily <u>OR</u> <u>NUZYRA Tablets:</u> 300 mg <u>orally</u> once daily (2.3)

Results

OMC was as good as LZD regarding clinical efficacy and microbiological response, and has a similar safety profile

No significant difference in mortality

Considerations

cSSTIs secondary to mixed infections

AEs associated with the long-term use of LZD (myelosuppression, peripheral and optic neuropathy, serotonin syndrome)

Efficacy and safety of omadacycline for treating complicated skin and soft tissue infections: a meta-analysis of randomized controlled trials

Wenxin Liang^{1†}, Hong Yin^{2†}, Huiling Chen¹, Juan Xu^{1*} and Yun Cai^{1*} BMC Infectious Diseases (2024) 24:219 https://doi.org/10.1186/s12879-024-09097-3

Omadacycline was noninferior to moxifloxacin for early clinical response

Treatment related AE occurred in 41.1% of patients in the Omdacycline group and 48.5% of patients in the moxifloxacin group

Twelve deaths (8 in the omadacycline group and 4 in the moxifloxacin group) occurred during the trial.

Subgroup	Omadacycline	Moxifloxacin	Percentage-	Point Difference (95% CI)
ITT population	no. of events	(total no. (%)		
Early clinical response	313/386 (81.1)	321/388 (82.7)		-1.6 (-7.1 to 3.8)
Investigator-assessed clinical response at EOT	349/386 (90.4)	341/388 (87.9)	+	
Investigator-assessed clinical response at PTE	338/386 (87.6)	330/388 (85.1)	+	2.5 (-2.4 to 7.4)
Clinical per-protocol population				
Early clinical response	308/356 (86.5)	314/360 (87.2)		-0.7 (-5.7 to 4.3)
Investigator-assessed clinical response at EOT	336/357 (87.0)	329/357 (84.8)	+	2.0 (-1.8 to 5.8)
Investigator-assessed clinical response at PTE	316/340 (92.9)	312/345 (90.4)	-	= 2.5 (-1.7 to 6.8)
Patients with PSI risk class II in the ITT population				
Early clinical response	43/57 (75.4)	41/56 (73.2)		= 2.2 (-14.0 to 18
Investigator-assessed clinical response at PTE	47/57 (82.5)	47/56 (83.9)		-1.5 (-15.7 to 12
Patients with PSI risk class III in the ITT population				
Early clinical response	191/227 (84.1)	187/216 (86.6)		-2.4 (-9.1 to 4.2)
Investigator-assessed clinical response at PTE	206/227 (90.7)	190/216 (88.0)		2.8 (-3.0 to 8.7)
Patients with PSI risk class IV in the ITT population				
Early clinical response	79/102 (77.5)	93/116 (80.2)		-2.7 (-13.8 to 8.1
Investigator-assessed clinical response at PTE	85/102 (83.3)	93/116 (80.2)		3.2 (-7.4 to 13.
			-20 -15 -10 -5 0	5 10 15 20
			Moxifloxacin Better	Omadacycline Better

Figure 2. Forest Plot of Primary and Secondary End Points.

The 95% confidence intervals are based on the Miettinen and Nurminen method without stratification.¹⁶ Scores on the Pneumonia Severity Index (PSI) are used to place patients with pneumonia into risk classes that range from I to V, with higher risk classes indicating a greater risk of death (additional details are provided in the protocol); in this trial, only patients in risk class II (PSI score, 51 to 70), III (71 to 90), or IV (91 to 130) were eligible for participation. EOT denotes end of treatment, ITT intention to treat, and PTE post-treatment evaluation.

Omadacycline for Community-Acquired Bacterial Pneumonia

Roman Stets, M.D., Ph.D., Monica Popescu, M.D., Joven R. Gonong, M.D., Ismail Mitha, M.D., William Nseir, M.D., Andrzej Madej, M.D., Ph.D., Courtney Kirsch, B.S., Anita F. Das, Ph.D., Lynne Garrity-Ryan, Ph.D., Judith N. Steenbergen, Ph.D., Amy Manley, B.S., Paul B. Eckburg, M.D., Evan Tzanis, B.S., Paul C. McGovern, M.D., and Evan Loh, M.D.

Omadacycline administered in combination with other antimicrobials was relatively safe over a median duration of eight months.

 Adverse events that were directly attributed to omadacycline were reported in 29% of patients

Promising effectiveness of omadacyclinecontaining regimens in patients with a high prevalence of macrolide resistance.

- 23% of those with refractory pulmonary disease had two consecutive negative cultures with no subsequent positive cultures

Characteristic	No. (%)
Duration of treatment, mo	
Median	8
Range	0.25-33
Interquartile range	4–15
Dose of omadacycline	
150 mg daily	4 (3.4)
300 mg daily	112 (95.7)
Unspecified	1 (<1)
Rationale for use of omadacycline ^a	
Initial therapy	13 (11.1)
Transition from intravenous therapy	54 (46.2)
Addition to regimen for treatment of refractory disease	37 (31.6)
Intolerance to other NTM therapy	28 (23.9)
Patients who discontinued therapy during study period	60 (51.3)
Reason for discontinuation, No. (% of total treated, $N = 117$)	
Completion of planned therapy	20 (17.1)
Adverse event or intolerance	23 (19.7)
Cost	7 (6.0)
Death (not related to NTM infection or treatment)	4 (3.4)
Other ^b	6 (5.1)

Open Forum Infectious Diseases

Long-term Safety and Tolerability of Omadacycline for the Treatment of *Mycobacterium abscessus* Infections

Christina M. Mingora,^{1,0} Wendy Bullington,¹ Paige E. Faasuamalie,² Adrah Levin,³ Gabriella Porter,⁴ Ryan Stadnik,⁵ Cara D. Varley,⁵ Doreen Addrizzo-Harris,⁴ Charles L. Daley,³ Kenneth N. Olivier,² Kevin L. Winthrop,⁵[©] Susan E. Dorman,¹ and Patrick A. Flume¹

¹Medical University of South Carolina, Charleston, South Carolina, USA, ²Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA, ³National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, USA, ⁴New York University Grossman School of Medicine, New York, USA, and ⁵Oregon Health & Science University, Portland, Oregon, USA

The Classics

- Quinolones
 - Can still be the right drug for the job despite risks
- TMP/SMX
 - Dosing is key
- Linezolid
- First generation cephalosporins
 - Dosing is key, emerging data

Sulopenem: Hot off the Presses

- Oral carbapenem approved in October 2024 for treatment of uncomplicated cystitis in adult women
- Data based on two non-inferiority trials. Studies for complicated UTI and intrabdominal infections did not meet level of evidence needed for approval
- Oral formulation packaged with probenecid, which may increase side effects

Society of Hospital Medicine

Overall Response at Test of Cure by Step-Down Category: Microbiologic Modified Intent-to-Treat Population

Outcome	Sulopenem, n/N (%)	Ertapenem, n/N (%)	Difference, % (95% Confidence Interval)
All patients			
âPrimary end point: overall success (test of cure)	301/444 (67.8)	325/440 (73.9)	-6.1 (-12.0 to1)
âReason for failure: asymptomatic bacteriuria	93 (20.9)	59 (13.4)	
Patients with ciprofloxacin-susceptible isolates by treatment regimen			
	Sulopenem IV/oral sulopenem, n/N (%)	Ertapenem IV/oral ciprofloxacin, n/N (%)	
âOverall success	168/248 (67.7)	186/215 (86.5)	-18.8 (-26.1 to -11.0)
âReason for failure: asymptomatic bacteriuria	54 (21.8)	10 (4.7)	

PMID: <u>36068705</u>

- Long-acting infusion antibiotics and oral stepdown are excellent options to avoid the complications of OPAT in the right patient population
- Dalbavancin has a high level of evidence supporting its use in significant staph infections
- Consider patient and drug level factors which could influence the efficacy of this approach

Questions?

Thank you

